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Lecture 38

High Frequency Filters



What is the relationship, if any, between a filter and 

an oscillator or VCO?

XOUT
Oscillator

• When power is applied to an oscillator, it initially behaves as a small-

signal linear network

• When operating linearly, the oscillator has poles (but no zeros)

• Poles are ideally on the imaginary axis or appear as cc pairs in the RHP

• There is a wealth of literature on the design of oscillators

• Oscillators often are designed to operate at very high frequencies

• If cc poles of a filter are moved to RHP is will become an oscillator

• Can oscillators be modified to become filters?
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Review from last lecture
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Consider moving all poles to left by Δα
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So, to get a high ω0, want β as large as possible

Consider the following 3-pole situation
Review from last lecture



Consider a cascaded integrator loop comprised of 

n integrators
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Review from last lecture
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VCO Derived Filters 

• Most if not all oscillators can be modified to form a narrow-band band-

pass filter

• Modification involves 

✓  adding loss so that the pole-pair with the largest real component is 

in the LHP

✓  Introducing input to form a filter

• Can provide new filter architectures and benefit from desirable properties 

of the oscillator

• High frequency filters can be obtained from high frequency oscillators

Review from last lecture



• Add loss to delay stages

• Multiple Input Locations Often Possible

• Natural Input is Input to delay stage 
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Inputs to Oscillator-Derived Filters:
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• Add loss to delay stages

• Often Just Salvage Stages (drop feedback loop)

• Natural input is input to delay stage

Most applicable to designing 2nd-order high frequency narrow band bandpass filters

Review from last lecture



High Frequency Filter Design

• Architecture selection is critical

• At high frequencies, simplicity of the structures is important

• Parasitic capacitances and their relationship to the time constants 

that can be achieved provide the ultimate limit on speed

• Will limit discussions to  “inductorless” structures



High Frequency Filter Design

• Degenerate VCOs

• Simple high-frequency integrator-based filters

Following two methods will provide highest frequency of operation



Integrator Architecture Selection
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Integrators for High-Speed Operation
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Single-ended High-Frequency TA Integrators
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Structures of choice for highest-frequency of operation

Some authors focus on voltage mode and others on current mode

But overall structures and performance appears to be identical 



C

VOUT

VIN

gm1

IB1

M1

Single-ended High-Frequency TA Integrators
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How high can I0 be?

Recall:  ω0 for integrator-based filters generally proportional to I0  
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Looks like we can make I0 as large as we want by making VEB large, C 

small, L small, and W large



Single-ended High-Frequency TA Integrators

How high can I0 be?
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Consider a typical filter – the two integrator loop
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Integrator is loaded by another integrator!
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Even if C goes to 0, I0 is limited!

CP is the parasitic capacitances on the output node



Single-ended High-Frequency TA Integrators

How high can I0 be?
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Setting C to 0 and assuming Cp is small, 
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Assuming the integrator stages are identical, it follows that 
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Transition (transit) frequency (fT) of a process
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The transit frequency of a process is the frequency where the short-circuit 

current gain of the common-source configuration drops to 1.
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Transition (transit) frequency (fT) of a process
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The transit frequency of a process is the frequency where the short-circuit 

current gain of the common-source configuration drops to 1.
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This is dependent upon VEB

Does not include effects of diffusion capacitances or overlap capacitances

fMAX is another figure that characterizes the speed of a process



Single-ended High-Frequency TA Integrators

How high can I0 be?
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Speed of operation increases with VEB1

VEB1 is limited by signal swing requirements and VDD

Symmetric Signal Swing:

{SW DD OQ OQ TV min V -V ,V - (V +100mV)}

OQ T EBV = V +V

min{SW DD T EB T EB TV V -V -V ,V +V - (V +100mV)}

(neglected C and CP)



Single-ended High-Frequency TA Integrators

How high can I0 be?
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Speed of operation increases with VEB

VEB is limited by signal swing requirements and VDD

Signal Swing:
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Single-ended High-Frequency TA Integrators

How high can I0 be?
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Neglecting Cp and C, obtained

How much power is required to realize I0MAX? 
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Single-ended High-Frequency TA Integrators
How high can I0 be?

EB1
0M 2

min

V
I

L


=

0M TI ω=

( )
2

DD T

OMAX

min

μ V +100mV-V
I

2L


EB1
0 1 1

1 1

V
I W / L

WL

OX

P OX

C

C+C C


=

+

Neglecting Cp and C, obtained

CP will modestly reduce the speed of the circuit 
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Consider the diffusion capacitances on M1 and M2
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Consider again Cp and recall:



How high can I0 be?

Consider a basic layout of a transistor

The capacitance density along the sw of the drain is 

usually somewhat less than that along the outer 

perimeters but may not easily be modeled separately

Assuming the same, drain diffusion capacitance of a transistor is given by

   DIFFC BOT  1 SW  1 C W d C 2d 2W= + +

W

d1

L

CDIFF

The parasitic diffusion capacitances are 

strongly layout dependent

CBOT is the bottom diffusion capacitance density

CSW is the sidwall diffusion capacitance density



How high can I0 be?
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How high can I0 be?
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Consider a basic layout of a transistor
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How high can I0 be?
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Consider a basic layout
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How high can I0 be?
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How high can I0 be?
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How high can I0 be?
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Example:   Consider the 0.25u TSMC CMOS Process

2

OX
C = 5.8fF/μ

SWn
C = .440fF/μ

SWp
C = .350fF/μ

2

BOT
C = 1.8fF/μ

n

p

μ
 = 4.1

μ

n
 μ = 3.74E10

BOT
h = 0.31

SW
h = 0.61

λ= 0.125

BOTh
BOTpBOTn 

OX OX

CC

C C
= =

SWh
SWpSWn 

OX OX

CC

λC λC
= =



How high can I0 be?
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Example:   Consider the 0.25u TSMC CMOS Process
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How high can I0 be?
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Example:   Consider the 0.25u TSMC CMOS Process
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SW term
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• Designer has control of VEB1 andVEB2

• The diffusion capacitance term can dominate the CGS term

• The SW capacitance can be the biggest contributor to the speed limitations

• A factor of 10 or even much more reduction in speed is possible due to the  

diffusion parasitics and layout

• Maximizing W1 will minimize I0 but power will get very large for marginal improvement in 

speed

If W1=1.5u and VEB1=VEB2 ( )
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Stay Safe and Stay Healthy !



End of Lecture 38
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