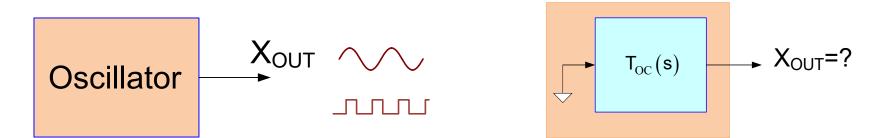
EE 508

Lecture 38

High Frequency Filters

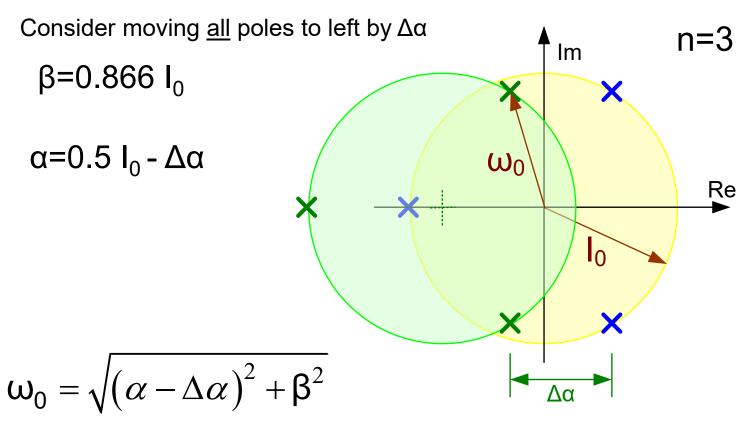
Review from last lecture What is the relationship, if any, between a filter and an oscillator or VCO?



- When power is applied to an oscillator, it initially behaves as a smallsignal linear network
- When operating linearly, the oscillator has poles (but no zeros)
- Poles are ideally on the imaginary axis or appear as cc pairs in the RHP
- There is a wealth of literature on the design of oscillators
- Oscillators often are designed to operate at very high frequencies
- If cc poles of a filter are moved to RHP is will become an oscillator
- Can oscillators be modified to become filters?

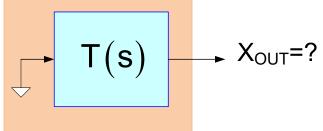
Consider the following 3-pole situation

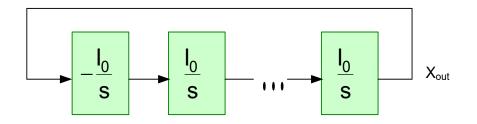
Poles of
$$D(s) = s^n + I_0^n$$



So, to get a high ω_0 , want β as large as possible

Review from last lecture Consider a cascaded integrator loop comprised of n integrators

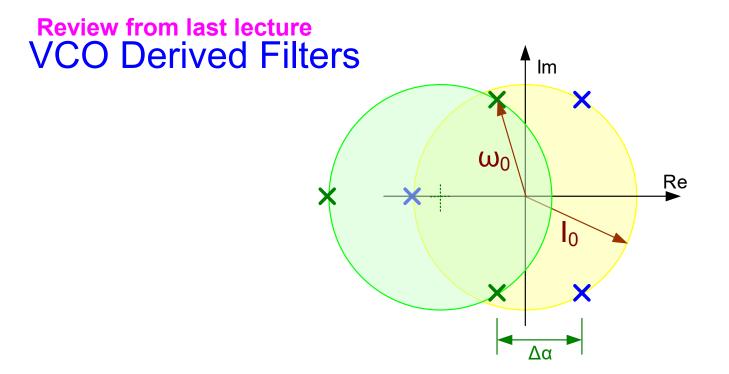




$$X_{OUT} = -\left(\frac{I_0}{s}\right)^n X_{OUT}$$

$$X_{OUT}\left(s^n + I_0^n\right) = 0$$

$$D(s) = s^n + I_0^n$$

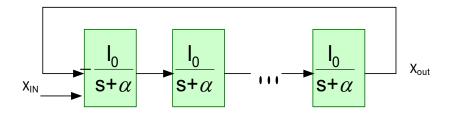


- Most if not all oscillators can be modified to form a narrow-band bandpass filter
- Modification involves
- ✓ adding loss so that the pole-pair with the largest real component is in the LHP
- ✓ Introducing input to form a filter
- Can provide new filter architectures and benefit from desirable properties of the oscillator
- High frequency filters can be obtained from high frequency oscillators

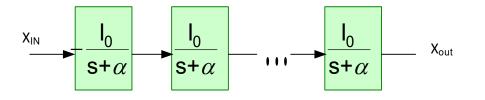
Review from last lecture Inputs to Oscillator-Derived Filters:

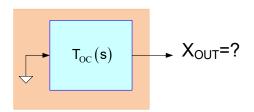
Most applicable to designing 2nd-order high frequency narrow band bandpass filters

- Add loss to delay stages
- Multiple Input Locations Often Possible
- Natural Input is Input to delay stage



- Often Just Salvage Stages (drop feedback loop)
- Natural input is input to delay stage





High Frequency Filter Design

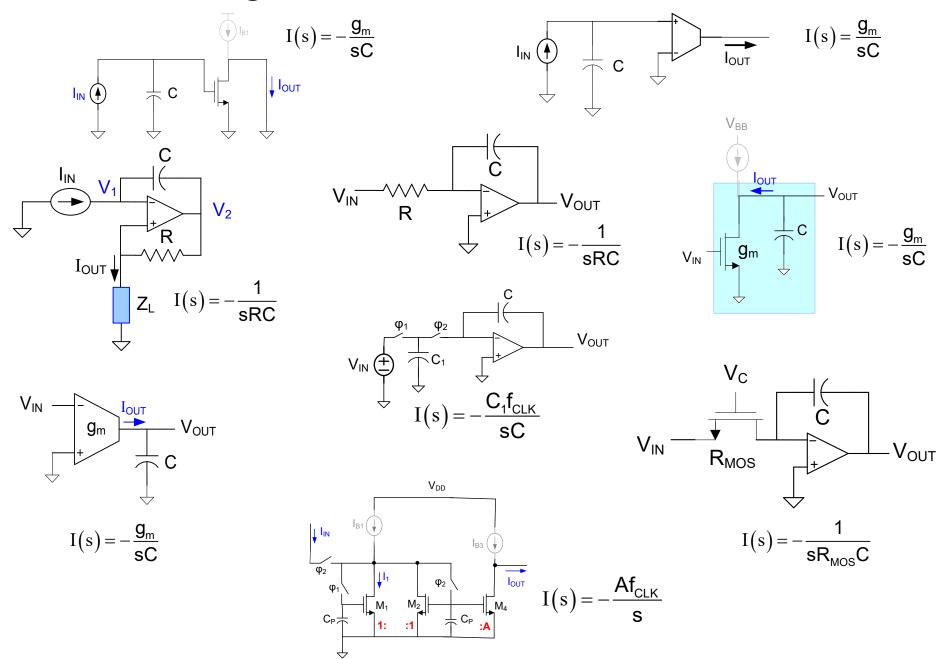
- Architecture selection is critical
- At high frequencies, simplicity of the structures is important
- Parasitic capacitances and their relationship to the time constants that can be achieved provide the ultimate limit on speed
- Will limit discussions to "inductorless" structures

High Frequency Filter Design

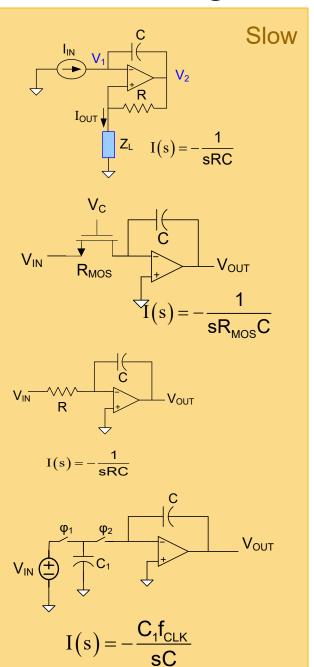
Following two methods will provide highest frequency of operation

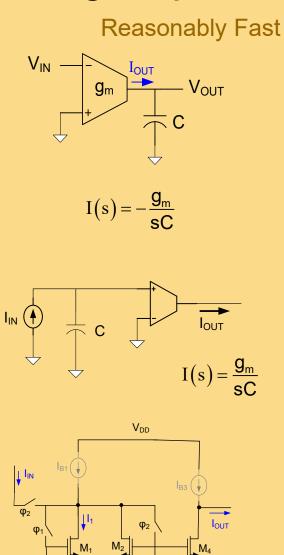
- Degenerate VCOs
- Simple high-frequency integrator-based filters

Integrator Architecture Selection

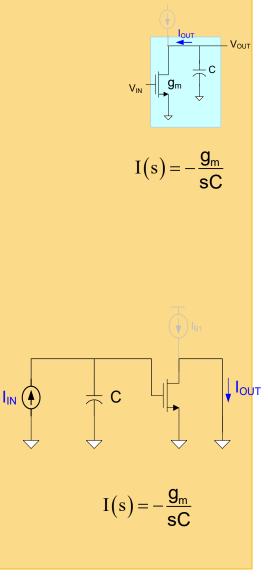


Integrators for High-Speed Operation



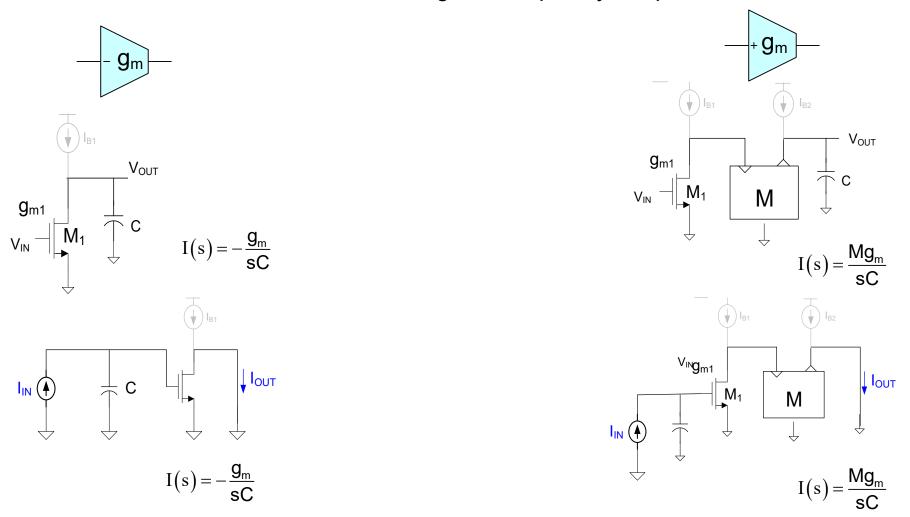


 $I(s) = -\frac{Af_{CLK}}{s}$

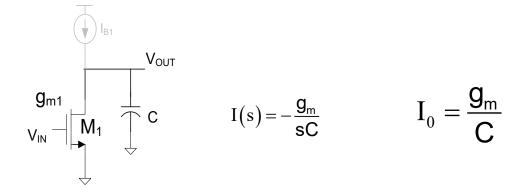


Very Fast

Structures of choice for highest-frequency of operation



Some authors focus on voltage mode and others on current mode But overall structures and performance appears to be identical



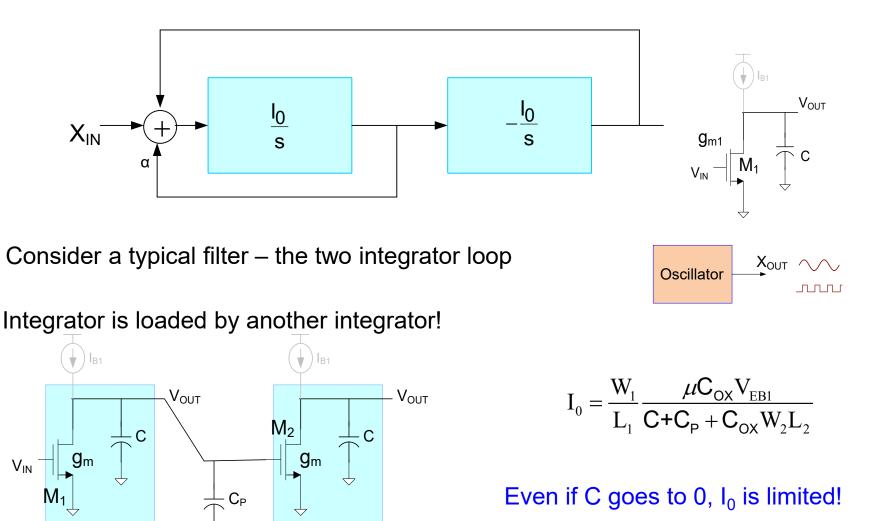
Recall: ω_0 for integrator-based filters generally proportional to I₀

How high can I_0 be?

$$I_0 = \frac{W}{L} \frac{\mu C_{OX} V_{EB}}{C}$$

Looks like we can make $\rm I_0$ as large as we want by making $\rm V_{EB}$ large, C small, L small, and W large

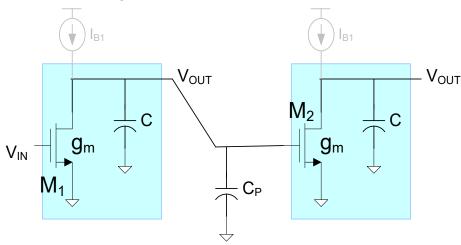
How high can I_0 be?



Even if C goes to 0, I_0 is limited!

 C_{P} is the parasitic capacitances on the output node

How high can I_0 be?



$$\mathbf{I}_{0} = \frac{\mathbf{W}_{1}}{\mathbf{L}_{1}} \frac{\mu \mathbf{C}_{\mathsf{OX}} \mathbf{V}_{\mathsf{EB1}}}{\mathbf{C} + \mathbf{C}_{\mathsf{P}} + \mathbf{C}_{\mathsf{OX}} \mathbf{W}_{2} \mathbf{L}_{2}}$$

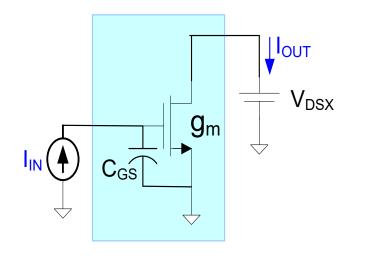
Setting C to 0 and assuming C_p is small,

$$I_0 = W_1 / L_1 \frac{\mu C_{OX} V_{EB1}}{C_{OX} W_2 L_2}$$
$$I_0 = \frac{\mu W_1 V_{EB1}}{W_2 L_1 L_2}$$

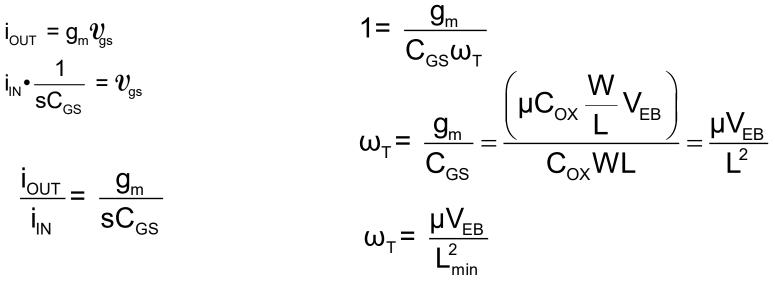
Assuming the integrator stages are identical, it follows that

$$I_0 = \frac{\mu V_{EB1}}{L_{min}^2}$$

Transition (transit) frequency (f_T) of a process



The transit frequency of a process is the frequency where the short-circuit current gain of the common-source configuration drops to 1.



Journal of the Korean Physical Society, Vol. 40, No. 1, January 2002, pp. 45~48

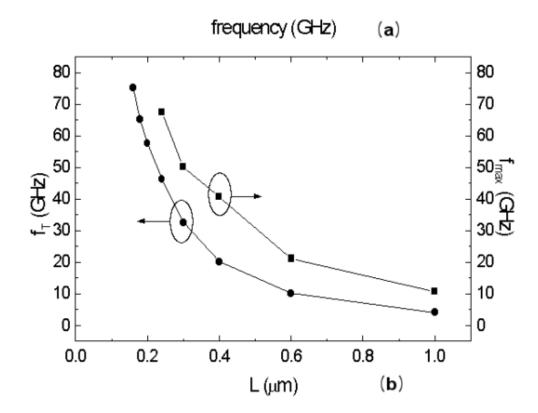
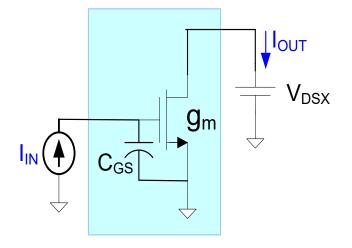


Fig. 7. (a) Maximum stable gain (MSG) and maximum available gain (MAG) for different channel lengths and (b) the cutoff frequency (f_T) and maximum oscillation frequency (f_{max}) as functions of the channel length.

Transition (transit) frequency (f_T) of a process

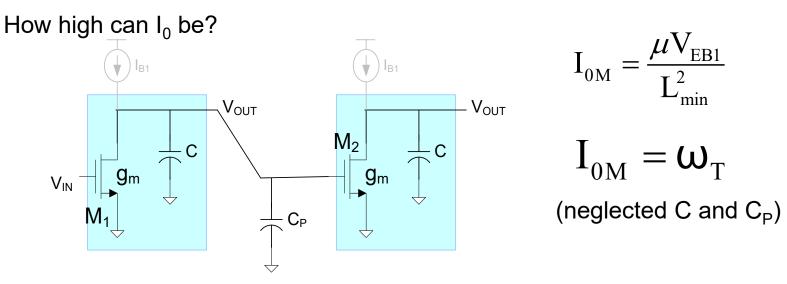


The transit frequency of a process is the frequency where the short-circuit current gain of the common-source configuration drops to 1.

$$\omega_{T} = \frac{\mu V_{EB}}{L_{min}^{2}}$$

This is dependent upon V_{EB}

Does not include effects of diffusion capacitances or overlap capacitances f_{MAX} is another figure that characterizes the speed of a process

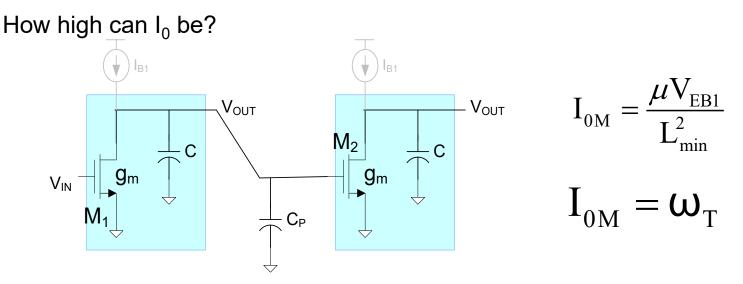


Speed of operation increases with V_{EB1}

 V_{EB1} is limited by signal swing requirements and V_{DD}

Symmetric Signal Swing:

$$V_{SW} \cong \min\{V_{DD} - V_{OQ}, V_{OQ} - (V_T + 100mV)\}$$
$$V_{OQ} = V_T + V_{EB}$$
$$V_{SW} \cong \min\{V_{DD} - V_T - V_{EB}, V_T + V_{EB} - (V_T + 100mV)\}$$



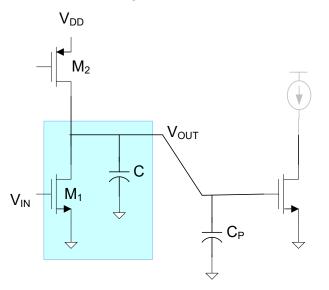
Speed of operation increases with V_{EB}

 V_{EB} is limited by signal swing requirements and V_{DD}

Signal Swing:

$$V_{DD} - V_{T} - V_{EB} = V_{T} + V_{EB} - (V_{T} + 100 \text{mV})$$
$$V_{EB} = \frac{V_{DD} + 100 \text{mV} - V_{T}}{2}$$
$$I_{OMAX} \cong \frac{\mu (V_{DD} + 100 \text{mV} - V_{T})}{2L_{min}^{2}}$$

How high can I_0 be?



How much power is required to realize I_{0MAX} ?

$$P_{\text{QPT}} = V_{\text{DD}} I_{\text{D}}$$
$$P_{\text{QPT}} = V_{\text{DD}} \frac{\mu C_{\text{OX}} W_1 V_{\text{EB1}}^2}{2L_{\text{min}}}$$

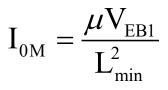
Note this is proportional to W_1

$$\begin{split} \mathbf{P}_{\text{QPT}} &= \mathbf{V}_{\text{DD}} \frac{\mu \mathbf{C}_{\text{OX}} \mathbf{W}_{\text{min}} \mathbf{V}_{\text{EB1}}^2}{2 \mathbf{L}_{\text{min}}} \overset{\mathbf{W}_{\text{min}} = \mathbf{L}_{\text{min}}}{\cong} \mathbf{V}_{\text{DD}} \frac{\mu \mathbf{C}_{\text{OX}} \mathbf{V}_{\text{EB1}}^2}{2} \\ &= \mathbf{V}_{\text{DD}} \frac{\mu \mathbf{C}_{\text{OX}}}{2} \left(\frac{\mathbf{V}_{\text{DD}} + 100 \text{mV} - \mathbf{V}_{\text{T}}}{2} \right)^2 \overset{\mathbf{V}_{\text{T}} = 0.25 \text{V}_{\text{DD}}}{\cong} \mathbf{V}_{\text{DD}} \frac{\mu \mathbf{C}_{\text{OX}}}{2} \left(\frac{0.75 \text{V}_{\text{DD}}}{2} \right)^2 \cong .07 \mu \mathbf{C}_{\text{OX}} \mathbf{V}_{\text{DD}}^3 \end{split}$$

$$\mathbf{I}_{0} = \frac{\mu \mathbf{C}_{\mathsf{OX}} \mathbf{W}_{1} / \mathbf{L}_{1} \mathbf{V}_{\mathsf{EB1}}}{\mathbf{C} + \mathbf{C}_{\mathsf{P}} + \mathbf{C}_{\mathsf{OX}} \mathbf{W}_{1} \mathbf{L}_{1}}$$

Neglecting Cp and C, obtained

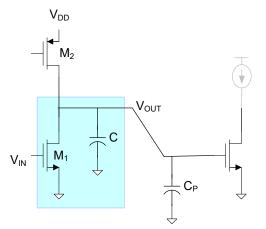
 $I_{0M} = \omega_T$



Note this is independent of W_1

$$I_{\text{OMAX}} \cong \frac{\mu (V_{\text{DD}} + 100 \text{mV} - V_{\text{T}})}{2L_{\text{min}}^2}$$

How high can I_0 be?



Consider again Cp and recall:

$$\mathbf{I}_{0} = \frac{\mathbf{W}_{1}}{\mathbf{L}_{1}} \frac{\mu \mathbf{C}_{\mathsf{OX}} \mathbf{V}_{\mathsf{EB1}}}{\mathbf{C} + \mathbf{C}_{\mathsf{P}} + \mathbf{C}_{\mathsf{OX}} \mathbf{W}_{2} \mathbf{L}_{2}}$$

C_P will modestly reduce the speed of the circuit

$$I_0 = \frac{\mu \boldsymbol{C}_{\mathsf{OX}} \boldsymbol{W}_1 \boldsymbol{V}_{\mathsf{EB1}}}{\boldsymbol{L}_{\mathsf{min}} \boldsymbol{C}_{\mathsf{P}} + \boldsymbol{C}_{\mathsf{OX}} \boldsymbol{W}_1 \boldsymbol{L}_{\mathsf{min}}^2}$$

Consider the diffusion capacitances on M₁ and M₂

$$I_{0} = \frac{\mu C_{\text{OX}} W_{1} V_{\text{EB1}}}{L_{\text{min}} \left(C_{\text{P1}} + C_{\text{P2}} \right) + C_{\text{OX}} W_{1} L_{\text{min}}^{2}}$$

$$\boldsymbol{I}_{0} = \boldsymbol{W}_{1} \, / \, \boldsymbol{L}_{1} \frac{\boldsymbol{\mu} \boldsymbol{C}_{\mathsf{OX}} \boldsymbol{V}_{\mathsf{EB1}}}{\boldsymbol{C} \textbf{+} \boldsymbol{C}_{\mathsf{P}} \, \textbf{+} \, \boldsymbol{C}_{\mathsf{OX}} \boldsymbol{W}_{1} \boldsymbol{L}_{1}}$$

Neglecting Cp and C, obtained

$$I_{0M} = \omega_T$$

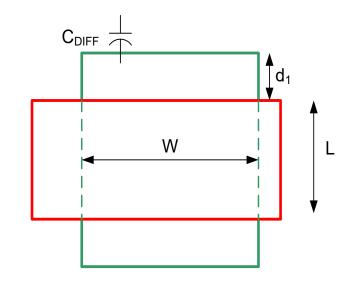
$$I_{0M} = \frac{\mu V_{EB1}}{L_{min}^2}$$

$$I_{OMAX} \cong \frac{\mu (V_{DD} + 100mV - V_T)}{2L_{min}^2}$$

How high can I_0 be?

The parasitic diffusion capacitances are strongly layout dependent

Consider a basic layout of a transistor

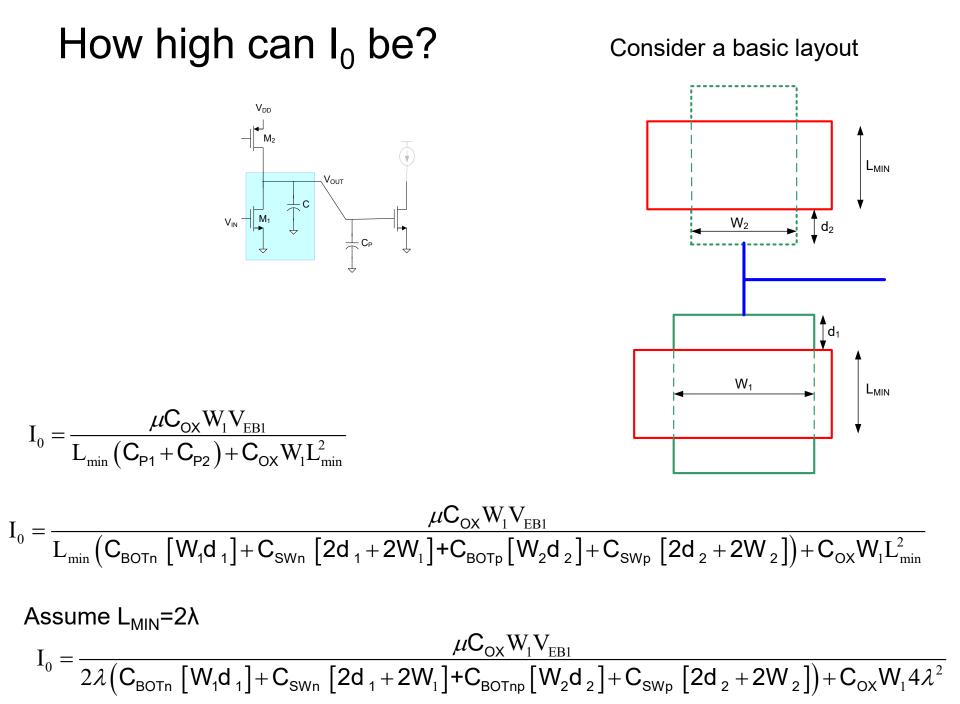


The capacitance density along the sw of the drain is usually somewhat less than that along the outer perimeters but may not easily be modeled separately

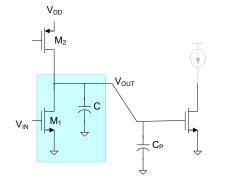
Assuming the same, drain diffusion capacitance of a transistor is given by

$$C_{DIFF} = C_{BOT} \left[W d_{1} \right] + C_{SW} \left[2d_{1} + 2W \right]$$

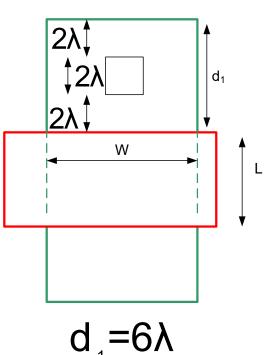
 C_{BOT} is the bottom diffusion capacitance density C_{SW} is the sidwall diffusion capacitance density



How high can I_0 be?



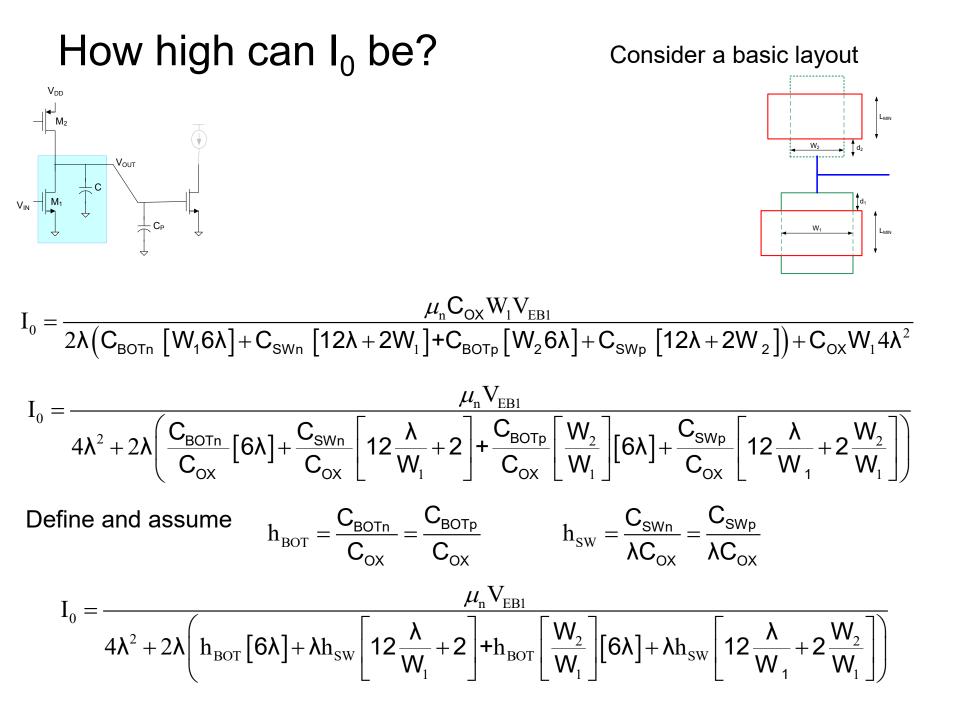
Consider a basic layout of a transistor

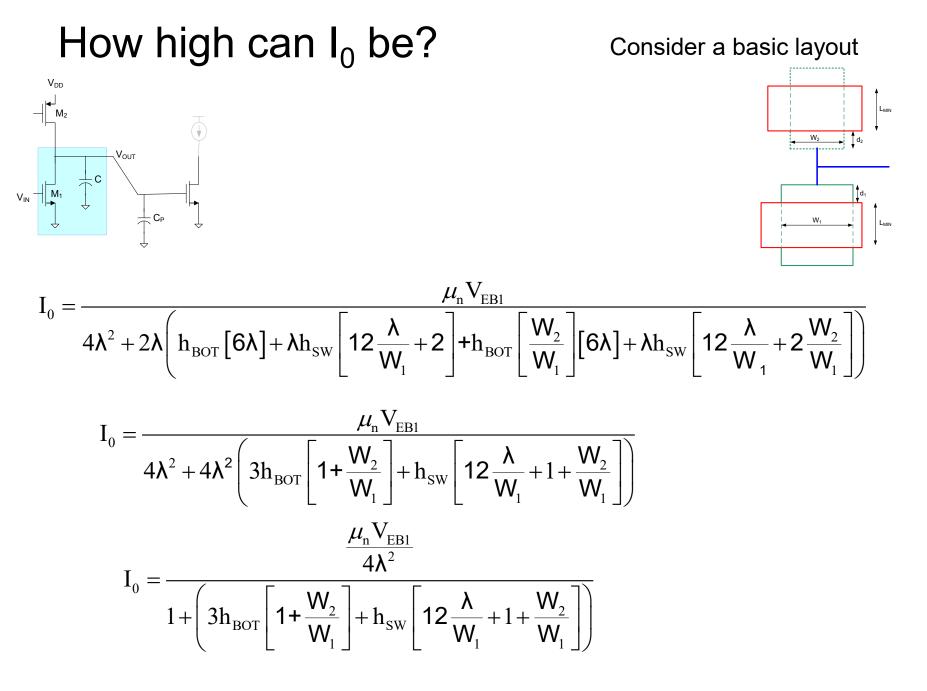


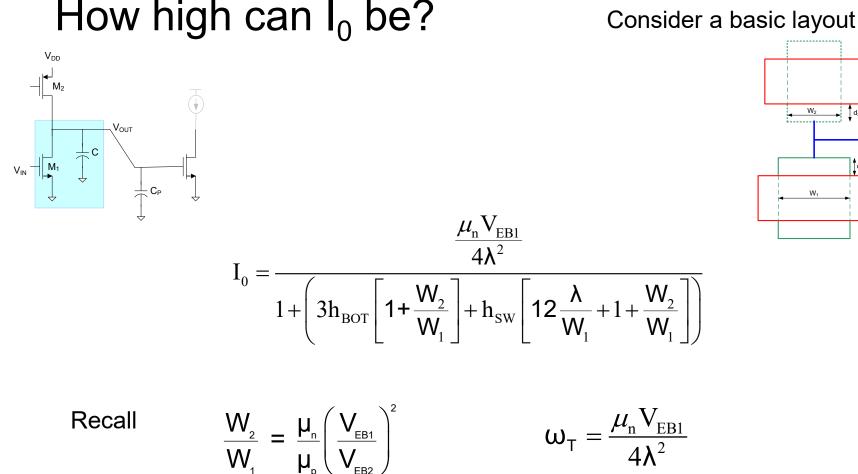
Assume $d_1=6\lambda$

 $I_{0} = \frac{\mu C_{OX} W_{1} V_{EB1}}{2\lambda \left(C_{BOTn} \left[W_{1} d_{1} \right] + C_{SWn} \left[2d_{1} + 2W_{1} \right] + C_{BOTp} \left[W_{2} d_{2} \right] + C_{SWp} \left[2d_{2} + 2W_{2} \right] \right) + C_{OX} W_{1} 4\lambda^{2}}$

 $I_{0} = \frac{\mu C_{\text{OX}} W_{1} V_{\text{EB1}}}{2\lambda \left(C_{\text{BOTn}} \left[W_{1} 6\lambda \right] + C_{\text{SWn}} \left[12\lambda + 2W_{1} \right] + C_{\text{BOTp}} \left[W_{2} 6\lambda \right] + C_{\text{SWp}} \left[12\lambda + 2W_{2} \right] \right) + C_{\text{OX}} W_{1} 4\lambda^{2}$

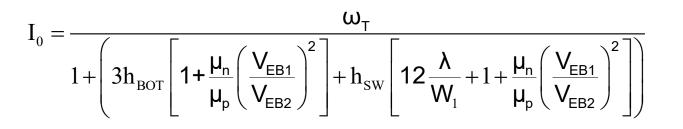






 W_2

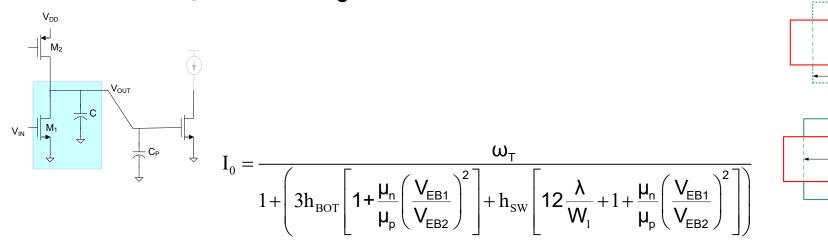
W₁



How high can I_0 be?

Consider a basic layout

 W_2



Example: Consider the 0.25u TSMC CMOS Process

$$C_{ox} = 5.8 \text{fF}/\mu^2$$
 $\frac{\mu_n}{\mu_p} = 4.1$ $C_{swn} = .440 \text{fF}/\mu$ μ_p $C_{swp} = .350 \text{fF}/\mu$ $\mu_n = 3.74 \text{E}10$ $C_{swp} = 1.8 \text{fF}/\mu^2$ $\lambda = 0.125 \mu$

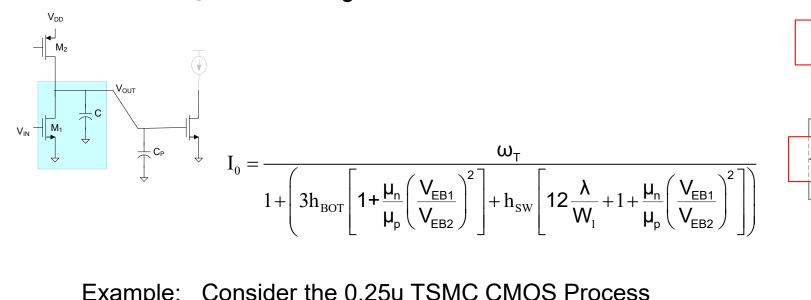
 $h_{BOT} = \frac{C_{BOTn}}{C_{OX}} = \frac{C_{BOTp}}{C_{OX}}$ $h_{BOT} = 0.31$ $h_{SW} = \frac{C_{SWn}}{\lambda C_{OX}} = \frac{C_{SWp}}{\lambda C_{OX}}$

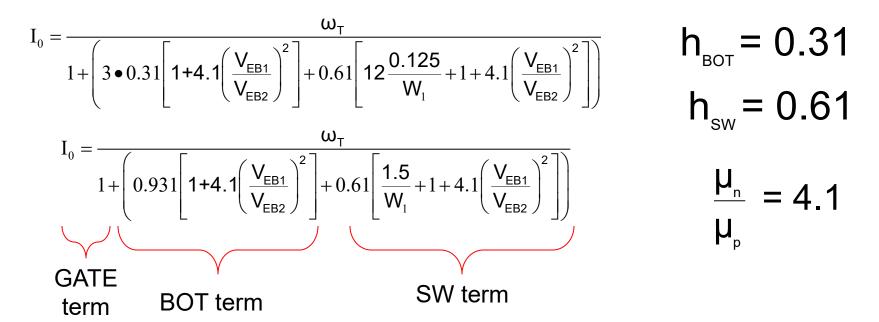
 $h_{sw} = 0.61$

How high can I_0 be?

Consider a basic layout

 W_2





Example: Consider the 0.25u TSMC CMOS Process $I_{0} = \frac{\omega_{T}}{1 + \left(0.93 \left[1 + 4.1 \left(\frac{V_{EB1}}{V_{EB2}}\right)^{2}\right] + 0.61 \left[\frac{1.5}{W_{1}} + 1 + 4.1 \left(\frac{V_{EB1}}{V_{EB2}}\right)^{2}\right]\right)}$

How high can I_0 be?

GATE

term

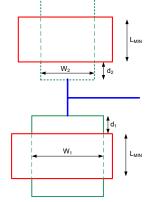
 V_{DD}

If W₁=1.5u and V_{EB1}=V_{EB2} $I_0 = \frac{\omega_T}{1 + (4.73 + 4.03)} = .102\omega_T$

BOT term

- Designer has control of V_{EB1} and V_{EB2}
 The diffusion consolitones term considering
- The diffusion capacitance term can dominate the $C_{\rm GS}$ term
- The SW capacitance can be the biggest contributor to the speed limitations
- A factor of 10 or even much more reduction in speed is possible due to the diffusion parasitics and layout
- Maximizing W_1 will minimize I_0 but power will get very large for marginal improvement in speed

SW term



Stay Safe and Stay Healthy !

End of Lecture 38